
Information density of a DVD

by Werner Gitt

Area of stored information on a DVD:

D = 117.5 mmd = 43.5 mm

Thickness of a DVD:

 $\delta = 1 \text{ mm}$

Area: $A = (D^2 - d^2) \cdot \pi/4 = (117.5^2 - 43.5^2) \cdot \pi/4 = 9357.2 \text{ mm}^2$

Volume: $V = A \cdot \delta = 9357.2 \text{ mm}^3 = 9.3572 \text{ cm}^3$

Information on a DVD: I = 4.7 Gigabytes, (1 byte = 8 bits)

 $I = 4.7 \cdot 10^9 \text{ bytes} = 8 \cdot 4.7 \cdot 10^9 \text{ bits} = 37.6 \cdot 10^9 \text{ bits}$

Information density of a DVD: $\rho_{DVD} = 37.6 \cdot 10^9 \text{ bits/9.3572 cm}^3 = 4 \cdot 10^9 \text{ bits/cm}^3$

Information density of the DNA molecule: $\rho_{DNA} = 1.88 \cdot 10^{21} \text{ bits/cm}^3$ (See: W. Gitt: In the Beginning was Information, CLV, p. 192)

Comparison:

 $\rho_{DNA} / \rho_{DVD} = 1.88 \cdot 10^{21} \text{ bits/cm}^3 / 4 \cdot 10^9 \text{ bits/cm}^3 = 0.47 \cdot 10^{12} \approx 0.5 \cdot 10^{12}$

The information density in the DNA molecule is 0.5·10¹² times higher than in a modern DVD!!!